Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules
نویسندگان
چکیده
High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.
منابع مشابه
A Novel Self-tuning Zone PID Controller for Temperature Control via a PLC code
S7-1200 with Tia Portal technology has become a Standard function of distributed controlsystems. Self-Tuning methods belong to Programmable Controllers (PLC) techniques. PLCtechniques contain software packages for advanced control based on mathematical methods. S7-1200 tools are designed to increase the Process Capacity, yield, and quality of products. Most ofthe present time digital industry r...
متن کاملSelf-tuning PID Control of Induction Motor Speed Control System Based on Diagonal Recurrent Neural Network
The performance optimization of induction motor speed control system is studied and self-tuning PID controller based on diagonal recurrent neural network (DRNN) is presented in this paper. Neural network control does not require the precise mathematical model of the system, and it only needs to train neural network online or offline, then use the training results to design the control system. I...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملSimulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor
In this research, modeling, simulation, and control of a methanol-to-olefins laboratory fixed-bed reactor with electrical resistance furnace have been investigated in both steady-state and dynamic conditions. The reactor was modeled as a one-dimensional pseudo-homogeneous system. Then, the reactor was simulated at steady-state conditions and the effect of different parameters including...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016